2211(a)

THE UNIVERSITY OF SYDNEY <u>CHEM1109 - CHEMISTRY 1B LIFE SCIENCES</u> <u>SECOND SEMESTER EXAMINATION</u>

CONFIDENTIAL

NOVEMBER 2010

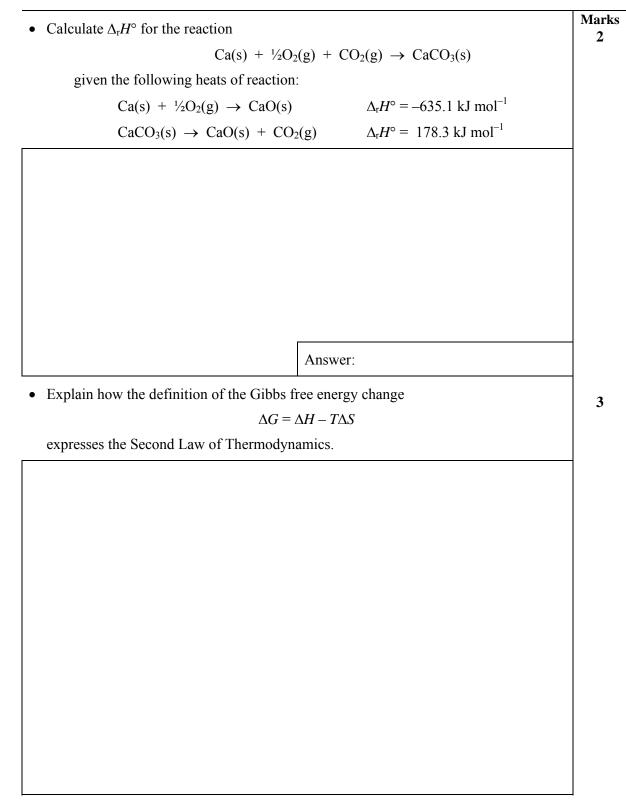
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

-

INSTRUCTIONS TO CANDIDATES


- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough work only.

OFFICIAL USE ONLY

_	Multiple choice section			
			Marks	
	Pages	Max	Gained	
	2-10	28		

Short answer section

	Marks			
Page	Max	Gained		Marker
11	5			
12	4			
13	6			
14	6			
15	8			
16	2			
17	6			
18	8			
19	5			
20	8			
21	7			
23	7			
Total	72			
Check Total				

Calculate the density (in g L^{-1}) of CO ₂ (g)	$j at 250$ K and 1.015×10 Fa (1 attri).
	Answer:
How does the density change with an inc	rease in temperature at constant pressure?
How does the density change with an inc	rease in temperature at constant volume?
s there any temperature at which the den Explain your answer.	usity of $CO_2(g)$ is less than that of air?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • At high temperatures (1100 K), CO₂(g) can be reduced to CO(g) by elemental carbon 6 (graphite): $CO_2(g) + C(graphite) \implies$ 2CO(g)A vessel at 1100 K containing powdered graphite was filled with CO₂(g) to a pressure of 0.458 atm. After equilibration was established, the final pressure was 0.757 atm. With reference to a standard state of 1 atm, calculate K_p for the reaction. $K_{\rm p} =$ What do you expect to be the signs of ΔG and ΔS for this reaction? Explain the reasons for your predictions. What experiment could be run in order to determine the sign of ΔH for this reaction?

•	Explain why the addition of salt to water <u>raises</u> the boiling point temperature of the solution but <u>lowers</u> the freezing point temperature.	Marks 3
		-
•	An aqueous solution with a volume of 10.0 mL contains 0.025 g of a purified protein of unknown molecular weight. The osmotic pressure of the solution was measured in an osmometer to be 0.0036 atm at 20.0 °C. Assuming ideal behaviour and no dissociation of the protein, estimate its molar mass.	3
	Answer:	

 Sketch the titration curve (pH against mL of added base) when 25.0 mL of 0.10 M hydrofluoric acid (HF) with a pK_a of 3.17 is titrated with 0.10 M NaOH. Calculate the pH at the following four points: (i) before any NaOH is added; (ii) when half of the HF has been neutralised; (iii) at the equivalence point; and (iv) 50% beyond the equivalence point, <i>i.e.</i> when 1.5 times the equivalence volume has been added. 	Marks 8

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Explain why iron storage proteins are necessary for the transport of iron both intracellularly and extracellularly within the bloodstream at a pH of 7.4.

Marks 2

Page Total:

• At present levels of $CO_2(g)$ in the atmosphere, water in contact with air becomes	Marks 6
acidic (pH = 5.60) through the hydrolysis of H_2CO_3 (<i>i.e.</i> $CO_2(aq)$).	_
$H_2CO_3 \iff H^+ + HCO_3^- \qquad K_a = 4.5 \times 10^{-7}$	
What is the concentration of H ₂ CO ₃ in such natural waters?	
Answer:	
What is the total concentration of dissolved CO ₂ ?	
Answer:	
If the atmospheric level of $CO_2(g)$ were to double, what would be the new pH of	_
natural waters in equilibrium with the atmosphere?	
	_
Answer:	

• ¹⁸Ne is an unstable isotope of neon. Which force within the nucleus is responsible for **Marks** its instability? Explain.

Write two possible mechanisms for the radioactive decay of 18 Ne to 18 F.

The molar mass of ¹⁸Ne is 18.006 g mol⁻¹. The activity of an isotopically pure 1.000 g sample of ¹⁸Ne is measured as 1.392×10^{22} Bq. Calculate the half-life of ¹⁸Ne.

Answer:

How long will it take for the activity of this pure 1.000 g sample of ¹⁸Ne to drop to 1.000×10^{10} Bq?

Answer:

Marks

3

• Explain, with the aid of a diagram labelling all the key components, how sodium stearate (C₁₇H₃₅COONa) can stabilise long-chain non-polar hydrocarbons ("grease") in water.

2

• Explain what is meant by a "non-oxidising acid" in aqueous solution.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

following half-c	l chemical reaction that tal ell reactions:	kes place in	n a galvanic	cell based on the	Μ
	$Cr^{3+}(aq) + 3e^{-} \rightarrow C$	r(s)	$E^{\circ} = -0.$	74 V	
	$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{C}$	Cu(s)	$E^{\circ} = +0.$	34 V	
Write the same	reaction in shorthand volta	ic cell nota	tion.		
Which metal ele	ectrode is acting as the cath	ode in this	reaction?		
	tential of a battery based o 55 M, the concentration of				
		Answer:			
	energy will be released as own completely?	the battery	described	in the previous	
	Г				

•	Write out the full name in standard notation of $[Co(NH_3)_4(SCN)_2]Cl$ and draw all the possible isomers of the complex ion.	Marks 7

Describe and contrast the nature of the chemical bonds:

(a) between N and H in NH₃;

(b) between Co and NH₃; and

(c) between $[Co(NH_3)_4(SCN)_2]$ and Cl in this compound.

Marks

7

• The following reaction is run from 4 different starting positions.								
	$H_2SeO_3 + 6I^- + 4H^+ \rightarrow Se + 2I_3^- + 3H_2O$							
Experiment NumberInitial $[H_2SeO_3]$ $(mol L^{-1})$ Initial $[I^-]$ $(mol L^{-1})$ Initial $[H^+]$ $(mol L^{-1})$ Initial rate of increase of $[I_3^-]$ $(mol L^{-1} s^{-1})$								
1	0.100	0.100	0.100	1.000				
2	0.100	0.075	0.100	0.422				
3	0.075	0.100	0.100	0.750				
4	0.100	0.075	0.075	0.237				

Determine the rate law for the reaction.

Rate law:

Calculate the value of the rate constant.

Answer:

Suggest an appropriate technique for measuring the rate of increase of $[I_3^-]$ in the above experiments.

CHEM1109

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10 ³	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	Μ	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	р				

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

Standard Reduction Potentials, E°						
Reaction	E° / V					
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82					
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72					
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51					
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50					
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36					
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36					
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23					
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18					
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96					
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96					
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92					
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80					
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77					
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53					
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34					
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15					
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)					
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04					
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13					
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14					
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24					
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40					
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44					
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74					
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76					
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83					
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89					
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68					
$\operatorname{Sc}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Sc}(s)$	-2.09					
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36					
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71					
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87					
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04					

Useful formulas							
Quantum Chemistry	Electrochemistry						
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	Moles of $e^- = It/F$						
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$T\lambda = 2.898 \times 10^6 \mathrm{K} \mathrm{nm}$	$= (RT/nF) \times \ln K$						
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Acids and Bases	Gas Laws						
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT						
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$						
Radioactivity	Kinetics						
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$						
$A = \lambda N$	$k = A e^{-Ea/RT}$						
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$						
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$						
Colligative Properties & Solutions	Thermodynamics & Equilibrium						
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
c = kp	$\Delta G^{\circ} = -RT \ln K$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R \ln K$						
$\Delta T_{\rm b} = K_{\rm b} m$	$\ln\frac{K_2}{K_1}=\frac{-\Delta H^\circ}{R}\Big(\frac{1}{T_2}-\frac{1}{T_1}\Big)$						
Miscellaneous	Mathematics						
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
$A = \varepsilon c l$	$\ln x = 2.303 \log x$						
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2						
$4\pi\varepsilon_0 r^{1/A}$	Surface area of sphere = $4\pi r^2$						

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

1	2	3	4	5	6	7	8	9	10	11	12	2	13	14	15	16	17	18
1 hydrogen H 1.008																		2 нелим Не 4.003
3 1лтним Li	4 BERYLLIUM Be												5 B B	6 CARBON C	7 NITROGEN N	8 OXYGEN O	9 FLUORINE F	10 _{NEON} Ne
6.941 11 sodium Na	9.012 12 MAGNESIUM Mg											ALI	0.81 13 MINIUM Al	12.01 14 silicon Si	14.01 15 рноярнояця Р	16.00 16 ^{SULFUR} S	19.00 17 chlorine Cl	20.18 18 ARGON Ar
22.99 19 potassium K	24.31 20 CALCIUM Ca	21 scandium Sc	22 titanium Ti	23 vanadium V	24 ^{CHROMIUM}	25 manganese Mn	26 IRON Fe	27 cobalt Co	28 ^{NICKEL}	29 COPPER Cu) : G.	<u>6.98</u> 31 спом G a	28.09 32 germanium Ge	30.97 33 Arsenic As	32.07 34 selenium Se	35.45 35 вкоміне Вг	39.95 36 krypton Kr
39.10 37 RUBIDIUM	40.08 38 strontium	44.96 39 yttrium	47.88 40 zirconium	50.94 41 NIOBIUM	52.00 42 molybdenum	54.94 43 тесниетим	55.85 44 ruthenium	58.93 45 _{кнодим}	58.69 46 palladium	63.55 47 SILVER	65.3 48	96 3 им г	9.72 49	72.59 50 ття	74.92 51	78.96 52 tellurium	79.90 53 iodine	83.80 54 xenon
Rb 85.47 55 caesium	Sr 87.62 56 barium	Y 88.91 57-71	Zr 91.22 72	Nb 92.91 73 TANTALUM	Mo 95.94 74 TUNGSTEN	Тс [98.91] 75 кнелим	Ru 101.07 76 озмиим	Rh 102.91 77 IRIDIUM	Pd 106.4 78 Platinum	Ag 107.87 79	С 112. 80 месси	40 11)	In 4.82 81	Sn 118.69 82 LEAD	Sb 121.75 83 ызмитн	Te 127.60 84 POLONIUM	I 126.90 85 ASTATINE	Xe 131.30 86 RADON
Cs 132.91 87	Ba 137.34 88	89-103	Hf 178.49	Ta 180.95	W 183.85 106	Re 186.2 107	Os 190.2 108	Ir 192.22 109	Pt 195.09 110	Au 196.97	H 200.	B 59 20	TI)4.37	Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
67 FRANCIUM Fr [223.0]	оо _{кадим} [226.0]	09-103	rutherfordiu Rf [261]		seaborgium Sg [266]	107 воняшм Bh [262]	108 назяши Hs [265]	MettNerium Mt [266]	Darmstadtium DS [271]	ROENTGENIUM ROENTGENIUM RG [272]		стим 1						
LANTHANO S	DID LANT	HANUM C	58 ERIUM F Ce 40.12	59 RASEODYMIUM Pr 140.91	60 ^{NEODYMIUM} Nd 144,24	61 ^{ргометніцм} Рт [144.9]	62 samarium Sm 150.4	63 EUROPIU EUR 151.9	G	d 7	65 гвіим ГЬ 58.93	66 _{Dysprositi} Dy 162.5		67 ноіміим Но 164.93	68 еквіим Ег 167.26	69 ^{тницим} Тт 168.93	70 уттеквим Yb 173.04	71 цитетним Lu 174.97
ACTINOIE	8	59 NIUM Т	90	91 PROTACTINIUM	92 URANIUM	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIU	90	5 UM BER	97 kellium	98 CALIFORNI		99 INSTEINIUM	107.20 100 FERMIUM	101 MENDELEVIUM	102 NOBELIUM	103 LAWRENCIUM

Bk

[247.1]

Cm

[247.1]

Am

[243.1]

Cf

[252.1]

Es

[252.1]

Pu

[239.1]

U

238.03

Np

[237.0]

Th

232.04

Ac

[227.0]

Pa

[231.0]

PERIODIC TABLE OF THE ELEMENTS

2211(b)

Lr

[260.1]

No

[259.1]

Md

[256.1]

Fm

[257.1]